<!--
This HTML was auto-generated from MATLAB code.
To make changes, update the MATLAB code and republish this document.
Contents
clear;clc;close;
load MovieData.mat
Draw a scatter plot of boxoffice against score, grouped by rating
figure();
gscatter(score,boxoffice, rating,'bgr','x.o^');
title('boxoffice vs. score, grouped by rating')
Create dataset array, convert rating to a nominal array
Movie=dataset(boxoffice, score,rating);
Movie.rating=nominal(Movie.rating);
Queston 1 in Matlab
fit=LinearModel.fit(Movie, 'score~rating')
fit =
Linear regression model:
score ~ 1 + rating
Estimated Coefficients:
Estimate SE tStat pValue
(Intercept) 67.65 7.1933 9.4046 1.7256e-16
rating_PG -12.593 7.8486 -1.6045 0.11093
rating_PG-13 -11.815 7.4113 -1.5941 0.11323
rating_R -12.02 7.4755 -1.6079 0.11017
Number of observations: 140, Error degrees of freedom: 136
Root Mean Squared Error: 14.4
R-squared: 0.0199, Adjusted R-Squared -0.00177
F-statistic vs. constant model: 0.918, p-value = 0.434
Question 2 in Matlab
Movie2=Movie;
Movie2.rating=reorderlevels(Movie2.rating, {'R','G','PG','PG-13'});
fit2=LinearModel.fit(Movie2,'score~rating')
fit2 =
Linear regression model:
score ~ 1 + rating
Estimated Coefficients:
Estimate SE tStat pValue
(Intercept) 55.63 2.0346 27.342 4.0302e-57
rating_G 12.02 7.4755 1.6079 0.11017
rating_PG -0.57286 3.7411 -0.15313 0.87852
rating_PG-13 0.20538 2.7062 0.075893 0.93962
Number of observations: 140, Error degrees of freedom: 136
Root Mean Squared Error: 14.4
R-squared: 0.0199, Adjusted R-Squared -0.00177
F-statistic vs. constant model: 0.918, p-value = 0.434
Questions 3 in Matlab
anova(fit)
ans =
SumSq DF MeanSq F pValue
rating 570.12 3 190.04 0.91818 0.43398
Error 28149 136 206.98
20/20
[~,~,st]=anova1(Movie2.score, Movie2.rating,'off');
[c,m,h,nms]=multcompare(st,'display','off','ctype','hsd')
c =
1.0000 2.0000 -31.2248 -12.0200 7.1848
1.0000 3.0000 -9.0380 0.5729 10.1837
1.0000 4.0000 -7.1578 -0.2054 6.7470
2.0000 3.0000 -7.5703 12.5929 32.7560
2.0000 4.0000 -7.2254 11.8146 30.8546
3.0000 4.0000 -10.0553 -0.7782 8.4988
m =
55.6300 2.0346
67.6500 7.1933
55.0571 3.1394
55.8354 1.7844
h =
[]
nms =
'R'
'G'
'PG'
'PG-13'